专利摘要:
A personal care article comprising a nonwoven fluid permeable topsheet having a body-facing surface and an opposing backside surface, a fluid impermeable backsheet and at least one intermediate layer disposed therebetween, wherein said fluid permeable topsheet comprises apertured holes wherein at least 10% of the aperture holes are treated with a hydrophilic treatment agent.
公开号:AU2013213905A1
申请号:U2013213905
申请日:2013-01-11
公开日:2014-07-17
发明作者:Frank P. Abuto;Nicole E. Cieslak;Marsha R. Forthofer;Donald E. Waldroup
申请人:Kimberly Clark Worldwide Inc;Kimberly Clark Corp;
IPC主号:A61K9-70
专利说明:
WO 2013/114231 PCT/IB2013/050285 TREATED APERTURES FIELD OF THE INVENTION The present invention relates to personal care products, particularly disposable 5 absorbent articles, comprising hydrophilically treated apertured holes that aid in keeping the surface of the article to appear and feel clean. BACKGROUND OF THE INVENTION A number of disposable, personal care articles that collect body fluids exist; 10 however, their tendency to leak off the surface before the liquid absorbent capacity is entirely used is an ongoing challenge that faces many manufacturers. Additionally, certain fluids, such as menses and runny BM (feces), have viscoelastic properties that make obtaining good intake and distribution performance particularly problematic. In particular, the relatively high viscosity and/or elasticity of such fluids tend to interfere with the 15 absorption and distribution of the fluids within the absorbent article. In other instances, intake performance of an absorbent article may be impeded when components of the menses block the channels between the particles or fibers contained in the absorbent article. This phenomenon is often referred to as fouling. Although attempts have been made to improve the effects of fouling through modification of the viscoelastic properties of the 20 fluid itself, actual improvement into the absorbent article still needs development. In addition to problems with leakage in some disposable, personal care articles, there are also hygienic issues that directly affect the user. Often the body fluid sits in direct contact with the user which makes for an unpleasant and unclean feel. Particularly with feminine hygiene products such as sanitary napkins, the unpleasant or unclean feeling, that 25 may often be caused by bodyside liner stains, may lead to poor perception in product performance and the inability to get maximum use from the product. Therefore, there is a need in the art for a treatment, that may be used in connection with personal care products, such as absorbent articles, that provides improved intake and distribution performance, reduced leakage, reduced stains, reduced surface rewet or 30 flowback for an overall cleaner, drier and more pleasant feel and user experience. 1 WO 2013/114231 PCT/IB2013/050285 SUMMARY OF THE INVENTION A personal care article comprising a nonwoven fluid permeable topsheet having a body-facing surface and an opposing backside surface, a fluid impermeable backsheet and at least one intermediate layer disposed therebetween, wherein said fluid permeable 5 topsheet comprises apertured holes wherein at least 10% of the aperture holes are treated with a hydrophilic treatment agent. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an embodiment of a personal care article of the present invention. 10 Specifically, FIG. 1 shows a feminine care absorbent product wherein several layers are shown and wherein the topsheet has hydrophilically treated apertures. FIG. 2 shows a top and cross-cut view of the hydrophobic treated topsheet of the present invention with hydrophilically treated apertures. FIG. 3 shows two embodiments of the present invention showing that the apertures 15 may be treated as patterns, wherein, for example 25% of the apertures may be treated in a "diamond" pattern (left) or wherein, for example, 50% of the apertures may be treated in a "zig-zag" pattern (right). DETAILED DESCRIPTION OF THE INVENTION 20 While the specification concludes with the claims particularly pointing out and distinctly claiming the invention, it is believed that the present invention will be better understood from the following description. All percentages, parts and ratios are based upon the total weight of the compositions of the present invention, unless otherwise specified. All such weights as they pertain to 25 listed ingredients are based on the active level and, therefore, do not include solvents or by products that may be included in commercially available materials, unless otherwise specified. The term "weight percent" may be denoted as "wt.%" herein. Except where specific examples of actual measured values are presented, numerical values referred to herein should be considered to be qualified by the word "about". 30 As used herein, "comprising" means that other steps and other ingredients which do not affect the end result can be added. This term encompasses the terms "consisting of' and "consisting essentially of'. The compositions and methods/processes of the present 2 WO 2013/114231 PCT/IB2013/050285 invention can comprise, consist of, and consist essentially of the essential elements and limitations of the invention described herein, as well as any of the additional or optional ingredients, components, steps, or limitations described herein. As used herein, the phrase "absorbent article" generally refers to devices which 5 absorb and contain body fluids, and more specifically, refers to devices which are placed against or near the skin to absorb and contain the various fluids discharged from the body and, in particular, viscoelastic fluids. Examples of absorbent articles include, but are not limited to, absorbent articles intended for personal wear, such as diapers; incontinence products; feminine hygiene products, such as feminine napkins, panty liners, tampons, and 10 interlabial pads; other personal garments; and the like. As used herein, "fouling" means the change in permeability of a fluid as it passes through a porous medium. More particularly, fouling is the reduction in permeability that occurs when components of a fluid pass through a porous medium and interact with the material structure, decreasing the inherent permeability of the porous material. 15 The term "hydrophilic", as used herein, refers to surfaces with water contact angles well below 900. The term "hydrophobic", as used herein, refers to the property of a surface to repel water with a water contact angle from about 900 to about 1200. As used herein, "rewetting" refers to the amount of fluid that comes from the 20 absorbent core back into and through the top layer, nonwoven surface. This may also be referred to as "flowback". The term "superhydrophobic" refers to the property of a surface to repel water very effectively. This property is quantified by a water contact angle generally exceeding 150'. The present invention relates to improved personal care products, particularly 25 disposable absorbent articles. Personal care products of the present invention include, but are not limited to, feminine hygiene products like sanitary wipes and menses absorbing devices (e.g., sanitary napkins and tampons), infant and child care products such as disposable diapers, absorbent underpants, and training pants, wound dressings such as bandages, incontinent products, products for wiping and absorbing oils, and the like. 30 Disposable absorbent articles (10) such as the feminine care absorbent product, illustrated in FIG. 1, for example, may include a liquid permeable topsheet (12), a substantially liquid impermeable backsheet (22) joined to the topsheet (12), and an 3 WO 2013/114231 PCT/IB2013/050285 absorbent core (16) positioned and held between the topsheet (12) and the backsheet (22). The topsheet (12) is operatively permeable to the liquids that are intended to be held or stored by the absorbent article (10), and the backsheet (22) may be substantially impermeable or otherwise operatively impermeable to the intended liquids. The absorbent 5 article (10) may also include an additional layer(s) (14) such as that shown in FIG. 1. This additional layer(s) (14) may be a liquid intake layer, liquid wicking layers, liquid distribution layers, transfer layers, barrier layers, and the like, as well as combinations thereof. Disposable absorbent articles (10) and the components thereof can operate to provide a body-facing surface (top surface of the topsheet (12)) and a garment-facing 10 surface (back surface of the backsheet (22)). As used herein, the "body-facing" or "bodyside" surface refers to the surface of the topsheet (12) that is disposed toward or placed adjacent to the body of the wearer during ordinary use. The "garment-side surface" refers to the backsheet (22) where the back of the surface is disposed away from the wearer's body and adjacent to the garment of the wearer during ordinary use. Suitable 15 absorbent articles are described in more detail in U.S. Patent No. 7,632,258. The fluid permeable topsheet (12) of the present invention may be left untreated or may be treated with a hydrophobic, superhydrophobic composition that helps to keep fluids from sitting atop the surface which can leave an unpleasant and/or unclean feeling from stains, accumulated debris or wetness on the surface. The disposable absorbent articles 20 (10) of the present invention are particularly adapted to receive fluids having viscoelastic properties, such as menses, mucous, blood products, and feces, among others to reduce stain area, reduce rewet, improve fluid intake, distribution, absorption properties and decrease leakage. More importantly, the fluid permeable topsheet (12) is preferably a substantially hydrophobic nonwoven such as spunbond, spunbond-meltblown-spunbond 25 (SMS), Bonded Carded Web (BCW) , spunlace or coform comprising apertured holes (20) wherein the apertured holes (20) are treated with a hydrophilic treatment agent, said treatment agent increasing the surface energy in and around the aperture holes to preferentially channel fluid flow into the holes (20) to provide advantages of the present invention in protecting against stains, re-wetting, particulate debris accumulation on the 30 body-facing surface and other unpleasantries. Although the present disclosure is discussed primarily in combination with feminine hygiene products such as feminine napkins, panty liners, and interlabial pads, it 4 WO 2013/114231 PCT/IB2013/050285 will be readily apparent to one skilled in the art based on the disclosure that the products and methods described herein can also be used in combination with numerous other absorbent articles designed to absorb fluids other than menses such as runny BM, urine and the like. 5 Fluid Permeable Topsheet The absorbent articles (10) of the present invention comprise a fluid permeable topsheet (12) that is preferably a nonwoven, body-facing fibrous sheet material. The present invention provides an advantage over topsheets comprising a thermoplastic film 10 since nonwovens are generally softer, cause less sweating and irritation from sweat, and avoids the plastic feel or rustling that is often associated with plastics and films. Nonwovens of the present invention include, but are not limited to, spunbond, meltblown, coform, air-laid, bonded-carded web materials, hydroentangled (spunlace) materials, combinations thereof and the like. For example, the fibers from which the nonwoven 15 material is made may be produced by the meltblowing or spunbonding processes, including those producing bicomponent, biconstituent or polymer blend fibers which are well known in the art. These processes generally use an extruder to supply melted thermoplastic polymer to a spinneret where the polymer is fiberized to yield fibers which may be staple length or longer. The fibers are then drawn, usually pneumatically, and deposited on a 20 moving formations mat or belt to form the nonwoven fabric. The fibers produced in the spunbond and meltblown processes may be microfibers. Microfibers of the present invention are small diameter fibers having an average diameter not greater than about 75 microns, for example, having an average diameter of from about 0.5 microns to about 50 microns, or more particularly, microfibers may have an average diameter of from about 2 25 microns to about 40 microns. Spunbond nonwoven fabrics are generally bonded in some manner as they are produced in order to give them sufficient structural integrity to withstand the rigors of further processing into a finished product. Bonding can be accomplished in a number of ways such as hydroentanglement, needling, ultrasonic bonding, adhesive bonding, 30 stitchbonding, through-air bonding and thermal bonding. The nonwoven also may be a bonded carded web. Bonded carded webs are made from staple fibers, which are usually purchased in bales. The bales are placed in a picker, 5 WO 2013/114231 PCT/IB2013/050285 which separates the fibers. Then, the fibers are sent through a combing or carding unit, which further breaks apart and aligns the staple fibers in the machine direction to form a generally machine direction-oriented fibrous nonwoven web. Once the web is formed, it then is bonded by one or more of several known bonding methods. One such bonding 5 method is powder bonding, wherein a powdered adhesive is distributed through the web and then activated, usually by heating the web and adhesive with hot air. Another suitable bonding method is pattern bonding, wherein heated calender rolls or ultrasonic bonding equipment are used to bond the fibers together, usually in a localized bond pattern, though the web can be bonded across its entire surface if so desired. Another suitable bonding 10 method, particularly when using bicomponent staple fibers, is through-air bonding. The nonwoven may also be produced through airlaying. The production of airlaid nonwovens is well defined in the literature and documented in the art. Examples include the DanWeb process as described in U.S. Pat. No. 4,640,810 to Laursen et al., the Kroyer process as described in U.S. Pat. No. 4,494,278 to Kroyer et al., U.S. Pat. No. 5,527,171 to 15 Soerensen, and the method of U.S. Pat. No. 4,375,448 to Appel et al., or other similar methods. The nonwoven of the present invention may also be a multilayer laminate. An example of a multilayer laminate is an embodiment wherein some of the layers are spunbond and some meltblown such as a spunbond/meltblown/spunbond (SMS) laminate 20 as disclosed in U.S. Pat. No. 4,041,203 to Brock et al., U.S. Pat. No. 5,169,706 to Collier, et al, and U.S. Pat. No. 4,374,888 to Bornslaeger. Such a laminate may be made by sequentially depositing onto a moving forming belt first a spunbond fabric layer, then a meltblown fabric layer and last another spunbond layer and then bonding the laminate in a manner described below. Alternatively, the fabric layers may be made individually, 25 collected in rolls, and combined in a separate bonding step. Such fabrics usually have a basis weight of from about 0.1 to 12 OSY (ounces per square yard) (6 to 400 gsm), or more particularly from about 0.75 to about 3 OSY. Hydrophobic/Superhydrophobic Coating 30 The nonwoven material of the present invention may or may not be treated with a hydrophobic or a superhydrophobic composition. If treated, as shown in FIG. 2, a major portion of the surface (12a) of the nonwoven topsheet (12) may be treated with a surface 6 WO 2013/114231 PCT/IB2013/050285 composition selected from a hydrophobic composition, a superhydrophobic composition, or combinations thereof. The other portion of the surface (12a) will comprise of hydrophilic treated (20a) apertures (20) as will be subsequently detailed. The hydrophobic coating may be a hydrophobic polymer that is dispersible in water 5 including, but not limited to, fluorinated or perfluorinated polymers. The fluorinated or perfluorinated polymer may need to be modified by introducing a comonomer onto their molecular structure. Suitable comonomers include, but are not limited to, ethylenically unsaturated monomers comprising functional groups which are capable of being ionized in water. One example is ethylenically unsaturated carboxylic acid, such as acrylic acid. One 10 example of a hydrophobic composition is a commercially available modified perfluorinated polymer compound available from DuPont* as a water-based product under the trade name Capstone ST-100. Another example of a hydrophobic composition that may be used to coat the surface of the nonwoven of the present invention is commercially available from Aculon* Company of San Diego, CA, U.S.A. as HI-F® proprietary composition. 15 In addition to the above examples, other hydrophobic materials suitable for the present invention are well defined and documented in the art. For example, US patent application 2002/0064639 describes hydrophobic compositions selected from the group consisting of silicones, fluorochemicals, zirconium compounds, oils, latexes, waxes, crosslinking resins, and blends thereof. Representative water repellent fluorochemical 20 compounds described in US Patent 7,407,899 include fluorochemical urethanes, ureas, esters, ethers, alcohols, epoxides, allophanates, amides, amines (and salts thereof), acids (and salts thereof), carbodiimides, guanidines, oxazolidinones, isocyanurates, and biurets. US Patent 6,548,732 describes hydrophobic substances from the group consisting of theobroma oil, cacao butter, cocoa butter, petrolatum, mineral jelly, white mineral oil, 25 dimethicone, zinc oxide preparation, chinese white, zinc white, beeswax, lanolin, jojoba oil and combinations thereof. Additionally, US Application 13/193065, filed July 28, 2011 discusses substrates that exhibit superhydrophobic properties when treated with a composition comprising a hydrophobic component selected from fluorinated polymers, perfluorinated polymers, and mixtures thereof; nano-structured particles selected from 30 fumed silica, hydrophobic titania, zinc oxide, nanoclay, and mixtures thereof; and water for an overall water-based, non-organic solvent. Examples of such compositions and surfaces 7 WO 2013/114231 PCT/IB2013/050285 in US Application 13/193065, filed July 28, 2011 exemplify the superhydrophobic treated surfaces that may be used as the nonwoven topsheet of the present invention. The present invention presents both hydrophobic and superhydrophobic coated nonwovens to aid in reducing the presence of body fluids on the body-facing surface of the 5 topsheet (12) making it more likely for the body fluid to gravitate towards the hydrophilic apertures (20) and into the absorbent core (16). Superhydrophobic surface topsheets are those with water contact angles of 1500 or greater which, may be achieved, for example, by altering the topography of the surface such as through elevations and depressions to create a rough surface and then applying 10 hydrophobic composition(s) thereto. US Patent 6,800,354, for example, describes a coating having a "nanoscale" structured surface such as by metal oxide particles with a suitable hydrophobic layer disposed on the structured substrate surface. Various other techniques for rendering surfaces superhydrophobic are also documented in, for example, US Patent Application 20090298369. These techniques include roughening hydrophobic 15 polymers such as fluorinated polymers, polydimethylsiloxane, paraffinic hydrocarbons and the like via templating methods, electrospinning to yield small fiber diameters, controlling crystallization, and such. Alternatively, a rough surface can be made by other techniques such as etching, lithography, sol-gel processing, layer-by-layer assembly and the like and the surface modified with a low surface energy material like those hydrophobic materials 20 mentioned previously. Another approach to achieve superhydrophobic properties is to coat a surface with a liquid dispersion that contains at least one low-surface energy component, such as a perfluorinated polymer, in combination with roughening features such as micro and nano structure forming particles that impart surface roughness when the coating composition is sprayed, padded or applied through other common application techniques. 25 Apertured Topsheet The nonwoven topsheet (12) of the present invention comprises treated apertured holes (20)/(20a) for attracting body fluids from the body-facing surface and into the absorbent core (16). The apertures (20) may be uniform in size or may be tapered or conical in shape, having a larger opening near the top and a smaller opening near the 30 bottom. Larger opening geometric shapes may be, but are not limited to, circles, triangles, pentagons, ovals, symmetrical, non-symmetrical and the like. The apertures (20) may also be patterned to show various designs or create advantaged depositions of the holes in 8 WO 2013/114231 PCT/IB2013/050285 particular articles in order to minimize re-wetting and/or stains. At least a portion of the apertures (20) will be treated with a hydrophilic treatment agent. Thus, at least about 10%, at least about 25%, at least about 50%, at least about 75% or 100% of the apertures within the nonwoven may comprise a hydrophilic treatment. The apertures may be treated and 5 untreated in a pattern as a design for aesthetically pleasing visual cues, or for functional advantages to minimize re-wetting and/or staining in particular areas of the nonwoven or for a combination of both aesthetic and functional features. Aperture diameters measured on the garment facing surface of the topsheet may range from about 0.1 mm to about 5mm, from about 0.4mm to about 1.5 mm or from about 0.5 to about 1.0 mm. The aperture 10 density may also range from about 7.8 x10 3 holes/m 2 to about 1.9 x10 6 holes/m 2 , from about 4.7 x10 4 holes/m 2 to about 9.3 x10 5 holes/m 2 or from about 1.6 x 10 5 holes/m 2 to about 3.1 x 10 5 holes/m 2 . The apertures may extend through the topsheet (12) thickness from the body-facing surface through and to the backside of the topsheet (12); though in some instances such as with a multi-layered laminate topsheet (not shown), the apertures 15 (20) may advantageously extend from the body-facing surface through to one or more layers (not shown) but not completely through to the backside of the laminated topsheet (not shown). Hydrophilic Treatment of Apertures 20 The entirety of apertures of the present invention may be treated with a hydrophilic treatment agent. If not all of the apertures are treated, at least from about 10%, at least from about 25% at least from about 50%, or at least from about 75% of the apertures are treated with a "hydrophilic treatment agent" (20a) that increases the capillary action of the fluid and assures that the liquid flows preferentially through the apertures (20) in the 25 nonwoven topsheet (12) and into the absorbent core (16). Additionally, the re-wetting is significantly decreased and the staining is significantly minimized. Thus, the present invention leaves the consumer with a product that feels more dry and clean for an overall improved performing product. Fluids having viscoelastic properties, such as menses, mucous, blood products, 30 feces and other body fluids for which personal care products are used have a tendency to interfere with the absorption and distribution properties of the personal care products. Thus, the treated (20a) apertures (20) of the present invention provide an advantage not 9 WO 2013/114231 PCT/IB2013/050285 only in drawing the fluids through capillary action but also in reducing the viscosity and elasticity of viscoelastic fluids thus enabling the fluid to flow more easily through the topsheet (12) into the absorbent core(16). Additionally, the fouling effects of the fluids are also reduced due to reduced viscosity and or elasticity, particularly of menses fluid. 5 The hydrophilic treatment agents described herein may exert various combinations of effects on viscosity, elasticity, and fouling, depending on the concentration and deposition at which they are applied to the substrate. The hydrophilic treatment agent of the present invention may be selected from the group consisting of polyethylene glycol laurates, polyethylene glycol lauryl ethers, and combinations thereof. Advantageously, the 10 polyethylene glycol laurates and polyethylene glycol lauryl ethers are capable of reducing both the viscosity and elasticity of viscoelastic fluid. Examples of suitable polyethylene glycol laurates include, but are not limited to, polyethylene glycol 400 monolaurate, polyethylene glycol 600 monolaurate, polyethylene glycol 1000 monolaurate, polyethylene glycol 4000 monolaurate, polyethylene glycol 600 dilaurate, and combinations thereof. 15 Examples of suitable polyethylene glycol lauryl ethers include, but are not limited to, polyethylene glycol 600 lauryl ether. Notably, the polyethylene glycol lauryl ether and/or polyethylene glycol laurate serves not only as a hydrophilic treatment agent, but is further capable of reducing the fouling properties of viscoelastic fluid. Such hydrophilic treatment agents include, but are not limited to, polyethylene glycol (PEG) 600 lauryl ether and 20 related compounds, polyethylene glycol (PEG) 600 monolaurate and related compounds, and combinations thereof. In addition to the PEG laurates and PEG lauryl ethers, other polyethylene glycol derivatives may be viscoelastic agents (i.e., are capable of reducing the viscosity and elasticity of viscoelastic fluids) and may be used as hydrophilic treatment agents for the 25 personal care products described herein. As used herein, the term "polyethylene glycol derivative" includes any compound comprising a polyethylene glycol moiety. Examples of other suitable PEG derivatives include, but are not limited to, PEG monostearates such as PEG 200 monostearates and PEG 4000 monostearate; PEG dioleates such as PEG 600 dioleate and PEG 1540 dioleate; PEG monooleates such as PEG 600 monooleate and PEG 30 1540 monooleate; PEG monoisostearates such as PEG 200 monoisostearate; and PEG 16 octyl phenyl. Particular polyethylene glycol derivatives for use as hydrophilic treatment agents are those that improve intake time of viscoelastic fluids as well as reduce viscosity 10 WO 2013/114231 PCT/IB2013/050285 and elasticity. Examples of such include, but are not limited to, PEG derivatives include PEG 1540 dioleate, PEG 600 monooleate, PEG 1540 monooleate, and PEG 16 octyl phenyl. These PEG derivatives may be used alone or in combination with PEG 600 monolaurate, PEG 600 lauryl ether, and/or other viscoelastic agents as a hydrophilic 5 treatment agent. In certain embodiments, the hydrophilic treatment agents described herein, such as polyethylene glycol 600 lauryl ether and/or the polyethylene glycol 600 monolaurate, may be used in combination with each other or in combination with other viscoelastant agents. Examples of additional viscoelastant agents that may be used in combination with the 10 hydrophilic treatment agents include, but are not limited to, sodium citrate, dextran, cysteine, Glucopon 220UP (available as a 60% (by weight) solution of alkyl polyglycoside in water from Henkel Corporation), Glucopon 425, Glucopon 600, Glucopon 625. Other suitable viscoelastant agents are described in U.S. Patent No. 6,060,636. Surprisingly, it has been discovered that certain viscoelastant agents that actually increase the fouling 15 effect of viscoelastic fluids when used alone, will in fact improve fouling effects when used in combination with PEG 600 lauryl ether and/or PEG 600 monolaurate. For example, in one embodiment, sodium citrate may be used in combination with PEG 600 monolaurate as a hydrophilic treatment agent. When two or more hydrophilic treatment agents are used in combination, the proportion of each hydrophilic treatment agent applied to the personal 20 care product is preferably in a ratio of from about 1:2 to about 2:1, and more preferably is about 1:1. The hydrophilic treatment agent may be applied in varying amounts depending on the desired results and application. Typically, hydrophilic the treatment agent is applied to the apertures in an amount of from about 0.10% to about 40%, from about 0.10% to about 25 20%, or from about 3% to about 12%, by weight of the treated substrate. In addition to the amount of hydrophilic treatment agent used within the apertures (20), the size of the apertures, the distance from each other on the substrate or the density of the holes/ % open area play a significant role in contributing to the advantages of the present invention. For example, aperture holes that are too large, (while advantageous in 30 allowing fluid to more easily enter the absorbent system) may be disadvantageous in contributing to increased rewet during product use such as when the wearer applies pressure to the product, for example in a sitting position. On the other hand, very small 11 WO 2013/114231 PCT/IB2013/050285 aperture holes in combination with low hole density, ( low % open area) (while advantageous for minimizing rewet) may be disadvantageous for fast fluid intake; and for menses in particular, may result in higher accumulation of debris and particulate matter on the topsheet. This may lead to the plugging of apertures resulting in a wetter, unclean 5 product. Hydrophilic treatment agents, such as polyethylene glycol (PEG) 600 lauryl ether, applied into (20a) of the apertures (20) help to breakdown the menses by reducing its viscosity and elasticity, improve intake and reduce debris accumulation on the topsheet surface. Inventors have found that about 1 wt.% to about 10 wt.% of such treatments applied in the apertures having a size range of from about 0.1 mm to about 5mm, from 10 about 0.4mm to about 1.5 mm or from about 0.5 to about 1.0 mm and a hole density range of about 7.8 x10 3 holes/m 2 to about 1.9 x10 6 holes/m 2 , from about 4.7 x10 4 holes/m 2 to about 9.3 x10 5 holes/m 2 or from about 1.6 x 10 5 holes/m 2 to about 3.1 x 10 5 holes/m 2 , in a hydrophobic coated (12a) topsheet (12), the resulting disposable absorbent article (10) provides the desired balance of fluid intake, reduced debris accumulation and rewet for 15 improved pad cleanliness and user experience. Hydrophobic/ Hydrophilic Treatments for One-way Valve The present invention strategically combines hydrophilic and hydrophobic compositions to treat a nonwoven topsheet (12) in order to significantly reduce re-wetting 20 and staining that often occurs during the use of personal care products such as disposable absorbent articles (10). The aperture treated topsheet (12) functions as a 'one-way valve' that allows fluid to more easily migrate from the body-facing surface to the absorbent core (16). Due to the design and composition utilized in the present invention, there is less undesirable re-wetting or flowback caused by the fluid re-entering from the absorbent core 25 (16) to the body-facing surface of the topsheet (12). One way to achieve a 'one-way valve' in the nonwoven topsheet (12) of the present invention is by aperture hole design, such as a conical hole design with a wider diameter hole on the body-facing side of the topsheet (12) than on the opposing back side of the topsheet (12) in combination with strategic hydrophilic and hydrophobic treatments. The aperture hole (20) is treated (20a) with a 30 hydrophilic treatment agent while either or both of the body-facing surface of the topsheet (12) and the back side of the topsheet (12) are treated with a hydrophobic or a superhydrophobic composition. Utilization of a "one way valve" system drives the fluid 12 WO 2013/114231 PCT/IB2013/050285 into the absorbent layer (16), away from the consumer's body such that the consumer feels more dry and clean for an overall improved performing product. EXAMPLES 5 The following examples further describe and demonstrate embodiments within the scope of the present invention. The examples are given solely for the purpose of illustration and are not to be construed as limitations of the present invention, as many variations thereof are possible without departing from the spirit and scope of the invention. 10 Example 1 A 4" by 8" rectangular piece of apertured spunbond nonwoven topsheet material with a basis weight of 0.50 OSY (ounces per square yard), aperture hole diameters of about 1-2mm, hole density of about 28.5 holes /in 2 (4.4 x 10 4 holes/m 2 ) and about 5 mm spacing between the holes was treated all over the body-side surface with Lutensol A65N 15 hydrophilic treatment agent commercially available from the BASF* corporation. The treatment agent was applied to the material surface using a Paramaco Quick Change Complete Handproofer with Evenflow Mechanical Anilox 220P engraved roller available from Parmaco* Global. About 1 mL of the Lutensol A65N was applied to the hand proofer via an eye dropper and applied to the surface of the spunbond substrate per manufacturer's 20 directions. The treatment add-on amount was recorded as weight percent (%wt.) of the original spunbond substrate sample weight; and the treated sample was stored in a sealed plastic bag prior to testing with menses simulant. The treated spunbond topsheet was then tested for fluid intake, rewet and stain-size using menses simulant, as described in US Patent 5,883,231. (Menses simulant available 25 from Cocalico Biological*, Reamstown, PA) consisting of 70% processed swine blood and 30% gentamicin (egg whites). The test apparatus set-up comprised model 55-4143 Harvard (Southwick, Massachusetts) Pump resting on a VWR Scientific model 100 rocking platform, a 5/8" diameter steel ball inside a 60mL Slip Top Syringe manufactured by BD, Franklin Lakes NJ, a hypodermic needle attached to the syringe via Tygon R-3606 1/16" 30 ID 1/8"OD tubing available from VWR scientific and a clamping stand. The top-sheet was tested over a simulated feminine pad comprising the fluid permeable apertured topsheet, 13 WO 2013/114231 PCT/IB2013/050285 fluid impermeable polyethylene (plastic) backsheet and intermediary intake and absorbent core layers disposed therebetween. The intake layer, adjacent to the topsheet, was a 125gsm, 2.08 mm thick airlaid nonwoven material manufactured with 81%/19% pulp/binder fiber ratio -(Koch 4825 5 FiberVision ECS806), 0.06 g/cc density. The absorbent layer, disposed between the intake layer and backsheet was a 240gsm, 0.17g/cc density airlaid material manufactured with 67%/ 8 % pulp/binder fiber ratio and 25% super absorbent particles. Approximately 30mL of menses simulant was pulled into the syringe that was mounted onto the rocking platform to allow proper and continuous mixing by the steel ball 10 therein. The needle was positioned vertically approximately 2-3 mm above the simulated pad surface by clamping it to the stand and the pump started to deliver 4mL of the menses simulant to the pad surface at a rate of 4mL/min. The intake time was recorded as the time from the first drop of simulant contacted the pad to when the no more absorption on the surface was visible. 15 After weighing, the sample was photographed in a controlled lighting environment with a Sony 3CCD Color Video Camera with a Sony VCL 707BXM lens. This image was analyzed using the ImageJ software, a public domain image processing software developed by the National Institute of Health and available for download from NIH.gov. Adjusting of the color threshold along with calibration of the image allowed for an approximate area of 20 the surface stain to be determined. Rewet Test: After imaging, the sample was tested for rewet. Rewet test is used to determine the amount of fluid that will come back to the surface when a load is applied. The amount of fluid that comes back through the surface is called "rewet value". The more the fluid that 25 comes through the surface, the larger the rewet value. Lower rewet values are associated with a drier material and, thus, a drier product. The rewet test was conducted and the values determined as described in US patent 7,943,813, except that the rewet tester used a bag of air instead of a bag of water and two pieces of 3" by 5" blotter paper were used instead of one. The blotter papers were weighed and the weight recorded. The sample was 30 placed on the center of the bag in the rewet unit and the blotter papers placed on top of the sample. The unit was started to inflate the bag and to apply 1 psi pressure to the sample and 14 WO 2013/114231 PCT/IB2013/050285 blotter paper for 3 minutes. After 3 minutes, the blotter papers were reweighed and the amounts of fluid picked-up by the blotter papers were calculated to determine rewet values. Three samples were prepared with these specifications and the results recorded in Table 1. 5 Table 1 Sample Hydrophilic Intake Surface Stain Rewet Wt (g) treatment Time Size agent (sec) (in 2 ) Wt% la 3.0 69 0.45 0.342 lb 2.6 70 0.43 0.345 lc 3.0 70 0.37 0.434 Example 1 **** 70 0.42 0.374 Average Example 2 10 In example 2, the test preparation and testing was conducted as in Example 1 except that the hydrophilic treatment agent was Inoterra DWE*, available from the BASF* Corporation. Four samples were prepared with these specifications and the results recorded in the Table 2. 15 Table 2 Sample % Intake Surface Stain Size Rewet Wt (g) Hydrophilic Time (sec) (in 2 treatment agent (Inoterra DWE) 2a 2.9 67 0.49 0.560 2b 2.9 72 0.42 **no data** 15 WO 2013/114231 PCT/IB2013/050285 2c 3.8 70 0.47 0.468 2d 3.8 70 0.45 0.524 Average * 70 0.46 0.517 Example 3 In example 3, the test preparation and testing was conducted as in Example 1 except that the Lutesol A65N hydrophilic treatment agent was applied only in the apertures using 5 Artist's Loft synthetic fiber paintbrushes (sizes 0 and 1, available from Michael's stores) rather than all over the sample surface. The hydrophilic treatment agent was applied into approximately 25% of the available apertures in a diamond pattern by dipping the brush tip into the aperture on the material. The results, in Table 3, show that the surface stain area in this example was reduced by about 60% compared to the average stain area of example 1. 10 Table 3 Example % Intake Time (sec) Surface Stain Size Rewet Wt (g) Hydrophilic (in 2 ) chemistry added 3 0.9 94 0.16 **no data** 4 3.2 100 0.21 0.403 5 3.6 100 0.16 0.576 Example 4 15 In example 4, the test preparation and testing was conducted as in Example 3 except that the Lutensol A65N hydrophilic treatment agent was applied in about 50% of the available apertures in a zigzag pattern. The results, compiled in Table 3, show that the surface stain area in this example is reduced by about 50% compared to the average stain area of example 1. 20 16 WO 2013/114231 PCT/IB2013/050285 Example 5 In example 5, the test preparation and testing was conducted as in Example 3 except that Lutensol A65N hydrophilic treatment agent was applied in about 100% of the available apertures. The results, compiled in Table 3, show that the surface stain area in this 5 example is reduced by about 60% compared to the average stain area of example 1. Example 6 In example 6, the test preparation and testing was conducted as in Example 3 except that the hydrophilic treatment agent was Inoterra DWE available from BASF. The results, 10 compiled in Table 4, show that the surface stain area is reduced by about 40% and rewet amount by about 70% compared to the average stain area of example 2. Table 4 Example Wt% Hydrophilic Intake Surface Stain Area Rewet Wt (g) treatment agent Time (sec) (in 2 ) 6 3.4 80 0.28 0.159 7 **no data** 90 0.12 0.035 8 1.8 90 0.20 0.042 15 Example 7 Example 7 is the same as Example 4 except that the hydrophilic treatment agent applied to the 50% of the apertures was Inoterra DWE available from BASF *. The results, in Table 4, show that the surface stain area is reduced by about 70% and the rewet amount by about 90% compared to the average stain area of example 2. 20 Example 8 Example 8 is the same as example 5, except that hydrophilic treatment agent applied to 100% of the apertures was Inoterra DWE available from BASF. The results are compiled in Table 4. The surface stain size in this example was reduced by about 55% and 25 the rewet weight was reduced by about 90% when compared to the respective average stain area of example 2. Example 9 17 WO 2013/114231 PCT/IB2013/050285 Example 9 is the same as example 3 except that Unidyne TG-KC03 hydrophobic composition available from Daikin America was first applied to the all over the sample surface then the hydrophilic treatment agent, Lutensol A65N, available from BASF was applied to treat 25% of the total apertures. The hydrophobic composition was applied 5 using hand proofer, the same as example 3 except that, due to the lower apparent viscosity of the fluid, the hand proofer was used to coat the surface two consecutive times by reapplying the composition to the hand proofer as needed. The hydrophobic composition coated sample was hung in an oven set at 1200 Centigrade temperature for one minute to cure the composition then the hydrophilic treatment agent was applied to 25% of the 10 apertures. The coating add-on amounts were recorded as weight percent (wt.%) hydrophobic and hydrophilic of the original sample weight. The results, compiled in Table 5, show about 40% reduction in rewet weight compared to example 1. Table 5 Example % % Intake Time (sec) Surface Stain Rewet Wt (g) hydrophobic Hydrophilic Size chemistry chemistry (in 2 ) added added 9 5.1 1.2 120 0.46 0.213 10 4.1 1.6 270 0.69 0.309 11 2.8 1.8 390 0.46 0.241 15 Example 10 Example 10 is the same as example 9 except that the hydrophilic treatment agent, Lutensol A65N, available from BASF * was applied to treat 50% of the total apertures in a zigzag pattern similar to example 4. The results in Table 5 show that the rewet weight was 20 reduced by about 20% compared to the Example 1 average. Example 11 25 Example 11 is the same as example 10 except that the hydrophilic treatment agent, Lutensol A65N, available from BASF was applied to treat 100% of the total apertures 18 WO 2013/114231 PCT/IB2013/050285 instead of 50%. The results in Table 5 show that the rewet weight was reduced by about 35% compared to the Example 1 average. Example 12 5 Example 12 is the same as example 9 except that the hydrophilic treatment agent, Inoterra DWE, available from BASF * was applied to treat 25%. The results in Table 6 show that the rewet weight was reduced by about 55% compared to the Example 2 average. Table 6 Example % % Intake Time Surface Rewet Wt. (g) hydrophobic Hydrophilic (sec) Stain Size chemistry chemistry (in 2 ) added added 12 5.1 1.2 180 0.42 0.224 13 4.6 **no data** 160 0.42 0.027 14 7.2 2.9 90 0.25 0.033 10 Example 13 Example 13 is the same as example 10 except that the hydrophilic treatment agent, Inoterra DWE *, available from BASF was applied to treat 50% of total apertures. The results in Table 6 show that the rewet weight was reduced by about 90% compared to the 15 Example 2 average. Example 14 Example 14 is the same as example 11 except that the hydrophilic treatment agent, Inoterra DWE, available from BASF was applied to treat 100% of the total apertures. The 20 results in Table 6 show that the stain area was reduced by about 45% and rewet weight by about 90% compared to the Example 2 average. Example 15 Example 15 is the same as example 5 except prior to treating 100% of the available 25 apertures with the Lutensol A65N hydrophilic treatment agent from BASF *, a hydrophobic coating composition, Greenshield C6X*, available from BigSky Technologies 19 WO 2013/114231 PCT/IB2013/050285 LLC was applied to the sample as in example 9. The results in Table 7 show that the rewet weight was reduced by about 35% compared to the Example 1 average. Table 7 Example: % % Intake Time Surface Stain Size Rewet Wt (g) hydrophobic Hydrophilic (sec) (in 2 ) chemistry chemistry added added 17 9.6 2.3 300 0.42 0.341 5 Example 16 Example 16 is the same as example 9 except that the hydrophobic composition was Greenshield C6X*, available from BigSky Technologies LLC and the hydrophilic treatment agent, Inoterra DWE *, available from BASF was applied to treat 25% of the 10 total apertures. Results in Table 8 show minimal to no reduction in stain area or rewet weight compared to example 2 averages. Table 8 Example: % % Intake Time Surface Stain Size Rewet Wt (g) hydrophobic Hydrophilic (sec) (in 2 ) chemistry chemistry added added 18 6.1 1.3 360 .52 0.507 19 0.4 0.7 160 .44 0.025 20 2.5 2.9 80 .39 0.039 15 Example 17 Example 17 is the same as example 4, except that a hydrophobic coating composition, Greenshield C6X*, available from BigSky Technologies LLC was applied to 20 the sample as in example 9 prior to applying Inoterra DWE * hydrophilic treatment agent to 50% of the apertures. The results in Table 8 show a minor reduction in surface stain area and about 95% reduction in rewet weight compared to the Example 2 average. 20 WO 2013/114231 PCT/IB2013/050285 Example 18 Example 18 is the same as example 15 except that Inoterra DWE * hydrophilic treatment agent was applied to 100% of the apertures. The results in Table 8 show about 5 15% reduction in surface stain area and about 90% reduction in rewet weight compared to Example 2 average. Example 19 Example 19 is similar to example 9 except that Aculon Hi-F * hydrophobic 10 composition, manufactured by Aculon*, Inc. of San Diego, CA was applied to the test sample using a painter's foam brush available from Michael's * stores by simply painting the hydrophobic composition onto the sample surface. The sample was then air dried at room temperature for at least 10 minutes and Lutensol A 65N hydrophilic treatment agent applied in about 25% of the apertures as in Example 3. The hydrophobic and hydrophilic 15 treatment agent add-on weights were recorded as weight percent (wt. %) of the original sample weight. Results in Table 9 show about 60% reduction in rewet weight compared to Example 1 average. Example 20 20 Example 20 is the same as example 4 except prior to the application of the Lutensol A65N hydrophilic treatment agent in 50% of the apertures, a coating of Aculon Hi-F hydrophobic composition was applied to sample as in Example 19. The results in the Table 9 show about 10% reduction in surface stain area compared to Example 1 average. 25 Example 21 Example 21 is the same as example 5 except prior to the application of the Lutensol A65N hydrophilic treatment agent in 100% of the apertures, a coating of Aculon Hi-F 30 hydrophobic composition was applied to the sample as in example 19. The results in the Table 9 show about 80% reduction in surface stain area and about 35% in rewet weight compared to example 1 average. 21 WO 2013/114231 PCT/IB2013/050285 Table 9 Example % % Intake Time Surface Stain Rewet Wt (g) hydrophobic Hydrophilic (sec) Size chemistry chemistry (in 2 ) added added 21 1.9 9.8 240 0.57 0.142 22 10.7 1.7 180 0.37 0.378 23 9.4 1.2 150 0.09 0.245 5 Example 22 Example 22 is the same as example 19, except that Inoterra DWE * hydrophilic treatment agent was used to treat 25% of the apertures. The results, in Table 10, show about 60% reduction in rewet weight compared to example 2 average. 10 Table 10 Example % % Intake Time Surface Stain Rewet Wt (g) hydrophobic Hydrophilic (sec) Size chemistry chemistry (in2) added added 24 10.6 7.5 420 0.43 0.213 25 8.7 1.3 150 0.26 0.013 26 11.7 1.9 150 0.11 0.041 Example 23 Example 23 is the same as example 20, except that Inoterra DWE * hydrophilic 15 treatment agent was used to treat 50% of the apertures. The results, in Table 10, show about 45% reduction in surface stain area and about 95% reduction in rewet weight compared to Example 2 average. Example 24 22 WO 2013/114231 PCT/IB2013/050285 Example 24 is the same as example 21, except that Inoterra DWE * hydrophilic treatment agent was used to treat 100% of the apertures. The results, in Table 10, show about 75% reduction in surface stain area and about 90% reduction in rewet weight compared to example 2 average. 5 The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as "40 mm" is intended to mean "about 40 mm". 10 All documents cited in the Detailed Description of the Invention are, in relevant part, incorporated herein by reference; the citation of any document is not to be construed as an admission that it is prior art with respect to the present invention. To the extent that any meaning or definition of a term in this written document conflicts with any meaning or definition of the term in a document incorporated by reference, the meaning or definition 15 assigned to the term in this written document shall govern. While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications 20 that are within the scope of this invention. 23
权利要求:
Claims (15)
[1] 1. A personal care article comprising a nonwoven fluid permeable topsheet having a body-facing surface and an opposing backside surface, a fluid impermeable backsheet and at least one intermediate layer disposed therebetween, wherein said fluid permeable topsheet comprises apertured holes wherein at least 10% of the aperture holes are treated with a hydrophilic treatment agent.
[2] 2. The personal care article of claim 1 wherein said hydrophilic treatment agent is a surfactant.
[3] 3. The personal care article of claim 2 wherein said surfactant is nonionic.
[4] 4. The personal care article of claim 1 wherein the hydrophilic treatment agent further comprises a viscoelastant agent selected from the group consisting of sodium citrate, dextran, cysteine, glucopan and combinations thereof. 5
[5] 5. The personal care article of claim 1 wherein said hydrophilic treatment agent is selected from the group consisting of polyethylene glycol laurates, polyethylene glycol lauryl ethers, and combinations thereof.
[6] 6. The personal care article of claim 1 wherein the nonwoven fluid permeable topsheet is spunbond, meltblown, coform, air-laid, bonded-carded web materials, hydroentangled (spunlace) materials, combinations thereof and the like.
[7] 7. The personal care article of claim 1 wherein a surface composition selected from a hydrophobic composition, a superhydrophobic composition and combinations thereof is applied to a surface of said fluid permeable topsheet, said surface selected from the body-facing surface, the opposing back side surface, and combinations thereof.
[8] 8. The personal care article of claim 7 wherein said hydrophobic composition is a modified perfluorinated polymer. 24 WO 2013/114231 PCT/IB2013/050285
[9] 9. The personal care article of claim 7 wherein said hydrophobic composition is selected from the group consisting of silicones, fluorochemicals, zirconium compounds, oils, latexes, waxes, crosslinking resins, and blends thereof.
[10] 10. The personal care article of claim 9 wherein said flourochemical compounds are selected from urethanes, ureas, esters, ethers, alcohols, epoxides, allophanates, amides, amines (and salts thereof), acids (and salts thereof), carbodiimides, guanidines, oxazolidinones, isocyanurates, and biurets
[11] 11. The personal care article of claim 1 wherein said apertured holes comprises a diameter that is larger on said body-facing surface of the nonwoven topsheet than on the opposing backside of said nonwoven topsheet.
[12] 12. The personal care article of claim 11 wherein said aperture hole diameter measured on said body-facing surface of said nonwoven topsheet is from less than about 2mm to less than about 5mm. 5
[13] 13. The personal care article of claim 12 wherein said aperture hole density measured on said body-facing surface of said nonwoven topsheet is less than about 9.3 x10 5 holes per m 2 .
[14] 14. The personal care article of claim 13 wherein said aperture hole density is from about 1.6 x 10 5 to about 3.1 x 10 5 holes/m 2 .
[15] 15. A personal care product comprising an absorbent article wherein said absorbent article comprises a nonwoven fluid permeable topsheet, a fluid impermeable backsheet, an absorbent core and at least one intermediate layer disposed there between, wherein said fluid permeable topsheet comprises apertured holes wherein at least 10% of the apertured holes are treated with a hydrophilic treatment agent. 25
类似技术:
公开号 | 公开日 | 专利标题
AU2013213905B2|2016-06-09|Treated apertures
EP3027157B1|2018-09-05|Treated three-dimensional apertured liners
EP3027156B1|2017-12-20|Treated three-dimensional apertured surge
JP2010518918A|2010-06-03|Absorbent article comprising a lotion comprising a polypropylene glycol material
EP2061416B1|2015-04-15|Treatment of personal care products to reduce leakage
EP1750636A1|2007-02-14|Breathable absorbent articles and composites comprising a vapor permeable, liquid barrier layer
JP2005511917A|2005-04-28|Mixed denier fluid treatment layer
RU2740052C1|2020-12-31|Absorbent product with skin ph regulating effect
AU2015387256A1|2017-08-24|Sanitary article comprising a pH control composition, and method for its production
BR112014017158B1|2021-12-21|PERSONAL HYGIENE ARTICLE, AND PERSONAL HYGIENE PRODUCT
JP2019517334A|2019-06-24|Absorbent article comprising an oil composition and an oil protective layer
RU2711302C1|2020-01-16|ABSORBING ARTICLE WITH A TOP SHEET WITH A CONTROLLED pH
BR112016001815B1|2021-11-16|LINING MATERIAL FACING THE BODY, AND PERSONAL HYGIENE ARTICLE
同族专利:
公开号 | 公开日
KR20170034930A|2017-03-29|
BR112014017158A2|2017-06-13|
RU2014133408A|2016-03-27|
WO2013114231A1|2013-08-08|
RU2640708C2|2018-01-11|
MX338647B|2016-04-25|
GB2513074B|2020-05-06|
AU2013213905B2|2016-06-09|
MX2014008676A|2014-10-17|
US20130197462A1|2013-08-01|
BR112014017158A8|2017-07-04|
KR101771301B1|2017-08-24|
GB201413914D0|2014-09-17|
GB2513074A|2014-10-15|
US9237973B2|2016-01-19|
KR20140117458A|2014-10-07|
CN104080447A|2014-10-01|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
US3814101A|1970-09-17|1974-06-04|Union Carbide Corp|Disposable absorbent articles|
US3838692A|1972-11-27|1974-10-01|Johnson & Johnson|Hydrophobic sheet with hydrophilic passages|
US3901238A|1974-03-18|1975-08-26|Procter & Gamble|Disposable diaper having a resin treated absorbent pad to improve integrity, softness and dryness|
US4062362A|1975-12-29|1977-12-13|Colgate-Palmolive Company|Disposable and self adjustable diapers|
US4585449A|1978-06-08|1986-04-29|Colgate-Palmolive Co.|Disposable diaper with improved top sheet|
US4629457A|1978-06-21|1986-12-16|Chicopee|Absorbent facing and method for making the same|
US4488928A|1983-05-16|1984-12-18|Kimberly-Clark Corporation|Method and apparatus for forming soft, bulky absorbent webs and resulting product|
GR851475B|1984-06-21|1985-11-25|Procter & Gamble||
US5188625A|1985-09-09|1993-02-23|Kimberly-Clark Corporation|Sanitary napkin having a cover formed from a nonwoven web|
US4755413A|1986-05-22|1988-07-05|Chicopee|Apertured film facing and method of making the same|
US4820294A|1986-05-22|1989-04-11|Chicopee|Apertured film facing and method of making the same|
US4735843A|1986-12-18|1988-04-05|The Procter & Gamble Company|Selectively surface-hydrophilic porous or perforated sheets|
DE3917791C2|1989-06-01|1992-06-04|Corovin Gmbh, 3150 Peine, De||
US5360420A|1990-01-23|1994-11-01|The Procter & Gamble Company|Absorbent structures containing stiffened fibers and superabsorbent material|
CA2123904A1|1991-11-19|1993-05-27|Mohammed Iqbal Aziz|Absorbent article having a nonwoven and apertured film coversheet|
CA2069839A1|1991-12-13|1993-06-14|Charles W. Colman|Nonwoven, coated substrates and method of applying a coating at high bath concentration and low wet pick-up|
DK0633762T3|1992-04-02|1997-09-15|Procter & Gamble|Absorbent articles|
US5454801A|1992-10-09|1995-10-03|Mcneil-Ppc, Inc.|Printed polymer coatings and method for making same|
EP0594983A1|1992-10-29|1994-05-04|Kimberly-Clark Corporation|Method of applying a coating at high bath concentration and low wet pick-up to materials such as nonwovens using a brush spray applicator|
US6183847B1|1994-04-25|2001-02-06|Avgol Ltd., Nonwoven Industries|Coating selective zones of thin webs to change the pervious character thereof|
KR100259316B1|1994-06-30|2000-06-15|데이비드 엠 모이어|Fluid transport webs exhibiting surface energy gradients|
WO1996014457A2|1994-11-02|1996-05-17|The Procter & Gamble Company|Method of producing nonwoven fabrics|
US5658639A|1995-09-29|1997-08-19|The Proctor & Gamble Company|Method for selectively aperturing a nonwoven web exhibiting surface energy gradients|
FI109710B|1996-02-09|2002-09-30|Suominen Nonwovens Ltd|Non-woven fabric finishing method and product containing fabric treated by the method|
US5770531A|1996-04-29|1998-06-23|Kimberly--Clark Worldwide, Inc.|Mechanical and internal softening for nonwoven web|
SE510531C2|1996-05-02|1999-05-31|Sca Hygiene Prod Ab|Hollow-casing layer for absorbing articles, as well as ways of making the casing layer|
US6060636A|1996-09-04|2000-05-09|Kimberly-Clark Worldwide, Inc.|Treatment of materials to improve handling of viscoelastic fluids|
RU2195962C2|1996-09-04|2003-01-10|Кимберли-Кларк Уорлдвайд, Инк.|Structure and product of personal hygiene arranged to absorb viscoelastic liquid and containing a substance of viscoelastic properties to alter viscoelastic properties of such liquid and method for absorbing viscoelastic liquid|
AU6464698A|1997-03-21|1998-10-20|Kimberly-Clark Worldwide, Inc.|Dual-zoned absorbent webs|
US6803496B2|1997-09-10|2004-10-12|The Procter & Gamble Company|Method for maintaining or improving skin health|
US6410823B1|1998-06-30|2002-06-25|Kimberly-Clark Worldwide, Inc.|Apertured film covers with localized wettability and method for making the same|
EP0985741A1|1998-09-07|2000-03-15|The Procter & Gamble Company|Modulated plasma glow discharge treatments for making super hydrophobic substrates|
US6649222B1|1998-09-07|2003-11-18|The Procter & Gamble Company|Modulated plasma glow discharge treatments for making superhydrophobic substrates|
EP0985740A1|1998-09-07|2000-03-15|The Procter & Gamble Company|Super hydrophobic coated substrates|
EP0985392A1|1998-09-07|2000-03-15|The Procter & Gamble Company|Absorbent article having super hydrophobic layers|
US6350711B1|1998-10-30|2002-02-26|Kimberly-Clark Worldwide, Inc.|Absorbent article with fluid treatment agent|
US6291050B1|1998-10-30|2001-09-18|The Procter & Gamble Company|Topsheet systems for absorbent articles exhibiting improved hydrophilicity gradients|
US6478786B1|2000-02-24|2002-11-12|Tyco Healthcare Retail Services Ag|Protective underwear|
CN2408852Y|2000-04-18|2000-12-06|李秋平|Surface dry reverse osmosis-prevention sanitary article shell fabric|
CN2439948Y|2000-09-22|2001-07-25|上海亚恒网面材料有限公司|Porous composite mesh face with high liquid permeability and capable of softening skin|
AU9488801A|2000-09-29|2002-04-08|Cotton Inc|Cellulosic substrates with reduced absorbent capacity having the capability to wick liquids|
EP1632207B1|2001-07-26|2012-08-29|The Procter & Gamble Company|Absorbent articles with elastic topsheets|
US6685686B2|2001-02-16|2004-02-03|Sca Hygiene Products Ab|Absorbent article|
SG114551A1|2001-06-08|2005-09-28|Uni Charm Corp|Absorbent article and methods of manufacturing the same|
JP4146192B2|2001-09-11|2008-09-03|ユニ・チャーム株式会社|Absorbent articles|
US7601415B2|2001-12-03|2009-10-13|Tredegar Film Products Corporation|Absorbent device using an apertured nonwoven as an acquisition distribution layer|
JP4098243B2|2001-12-03|2008-06-11|トレドガーフィルムプロダクツコーポレイション|Perforated nonwoven fabric composite and method for producing the same|
CN1185995C|2002-07-29|2005-01-26|许大鹏|Gradient surface energy three-D pore structure of non-woven fabric|
US7407899B2|2003-01-10|2008-08-05|Milliken & Company|Textile substrates having layered finish structure for improving liquid repellency and stain release|
AU2003901735A0|2003-04-11|2003-05-01|Unisearch Limited|Durable superhydrophobic coating|
EP1644450B1|2003-06-23|2015-08-19|University Of Zurich|Superhydrophobic coating|
DE602005024924D1|2004-02-11|2011-01-05|Procter & Gamble|HYDROPHOBIC SURFACE-COATED VACUUM ARTICLES|
US7381299B2|2004-06-10|2008-06-03|Kimberly-Clark Worldwide, Inc.|Apertured tissue products|
WO2006011625A1|2004-07-30|2006-02-02|Mitsubishi Chemical Corporation|Liquid absorbing composite body, method for producing same, liquid absorbing article, and nozzle|
US8211078B2|2005-02-17|2012-07-03|The Procter And Gamble Company|Sanitary napkins capable of taking complex three-dimensional shape in use|
EP2428598A1|2005-03-10|2012-03-14|Massachusetts Institute of Technology |Superhydrophobic fibers and methods of preparation|
US7914866B2|2005-05-26|2011-03-29|Kimberly-Clark Worldwide, Inc.|Sleeved tissue product|
US20070005024A1|2005-06-10|2007-01-04|Jan Weber|Medical devices having superhydrophobic surfaces, superhydrophilic surfaces, or both|
DE602005013830D1|2005-10-05|2009-05-20|Sca Hygiene Prod Ab|VACUUM ARTICLE WITH HYDROPHILIC AND HYDROPHOBIC REGIONS|
DE102005051550A1|2005-10-27|2007-05-03|Fibertex A/S|Superhydrophobic coating of a polymer fleece, in particular a polypropylene fleece|
FR2894164B1|2005-12-01|2008-02-29|Centre Nat Rech Scient|PREPARATION OF SUPERHYDROPHOBIC FIBROUS SUBSTRATES|
US8067065B2|2005-12-08|2011-11-29|Toyota Motor Engineering & Manufacturing North America, Inc.|Fibrillar, nanotextured coating and method for its manufacture|
AU2005339199A1|2005-12-16|2007-06-21|Sca Hygiene Products Ab|Absorbent product|
RU2394543C2|2005-12-20|2010-07-20|Ска Хайджин Продактс Аб|Absorbing product for women|
US20070141305A1|2005-12-21|2007-06-21|Toshihiro Kasai|Superhydrophobic coating|
US8354160B2|2006-06-23|2013-01-15|3M Innovative Properties Company|Articles having durable hydrophobic surfaces|
US20080090050A1|2006-10-13|2008-04-17|Tredegar Film Products Corporation|Dry top formed film|
US20100069864A1|2006-12-11|2010-03-18|Sca Hygiene Products Ab|Absorbent article with a strongly hydrophobic layer|
US8193406B2|2007-05-17|2012-06-05|Ut-Battelle, Llc|Super-hydrophobic bandages and method of making the same|
US9539149B2|2007-07-13|2017-01-10|Ut-Battelle, Llc|Superhydrophobic, diatomaceous earth comprising bandages and method of making the same|
WO2009062998A1|2007-11-13|2009-05-22|Tesalca-99, S.A.|Perforated and treated material|
EP2247372A4|2007-12-27|2013-12-04|3M Innovative Properties Co|Method for making a functionalized membrane|
US20090233046A1|2008-03-11|2009-09-17|Tredegar Film Products Corporation|Apertured nonwoven webs with lined apertures|
US8870839B2|2008-04-22|2014-10-28|The Procter & Gamble Company|Disposable article including a nanostructure forming material|
US8513483B2|2009-02-27|2013-08-20|The Procter & Gamble Company|Hydrophobic surface coated material for use in absorbent articles|JP5998000B2|2012-09-30|2016-09-28|ユニ・チャーム株式会社|Nonwoven fabric and absorbent article|
AU2014342318B2|2013-10-31|2019-08-15|Kimberly-Clark Worldwide, Inc.|One-way valve nonwoven material|
WO2015134359A1|2014-03-06|2015-09-11|The Procter & Gamble Company|Three-dimensional substrates|
US20150275419A1|2014-03-31|2015-10-01|Kimberly-Clark Worldwide, Inc.|Tissue-based water barrier material|
CN104323884B|2014-11-04|2019-03-19|福建恒安卫生材料有限公司|The absorbent item of compound quilting material including the dry and comfortable self-cleaning function of comprehensive leakproof|
EP3215092A1|2014-11-06|2017-09-13|The Procter and Gamble Company|Patterned apertured webs, laminates, and methods for making the same|
US20160167334A1|2014-11-06|2016-06-16|The Procter & Gamble Company|Crimped Fiber Spunbond Nonwoven Webs/Laminates|
KR101804107B1|2014-12-30|2017-12-01|킴벌리-클라크 월드와이드, 인크.|Absorbent article with elevated skin-contacting topsheet layer|
CN105063896B|2015-08-17|2017-04-26|博裕纤维科技(苏州)有限公司|Manufacturing method of waterproof and breathable paper diaper base membrane|
WO2017034796A1|2015-08-26|2017-03-02|The Procter & Gamble Company|Absorbent articles having three-dimensional substrates and indicia|
CN108602366A|2016-02-05|2018-09-28|宝洁公司|The method that composition is applied to web|
EP3426212B1|2016-03-11|2020-10-21|The Procter and Gamble Company|Compositioned, textured nonwoven webs|
EP3478235B1|2016-07-01|2020-10-14|The Procter and Gamble Company|Absorbent articles with improved topsheet dryness|
CN109562005A|2016-09-09|2019-04-02|宝洁公司|Three-dimensional open pores substrate|
CN109562006A|2016-09-09|2019-04-02|宝洁公司|Composition is applied to the system and method and its web of web|
WO2018152272A1|2017-02-16|2018-08-23|The Procter & Gamble Company|Absorbent articles with substrates having repeating patterns of apertures comprising a plurality of repeat units|
US20190000690A1|2017-06-30|2019-01-03|The Procter & Gamble Company|Disposable absorbent article having surface modified topsheet|
US20190000691A1|2017-06-30|2019-01-03|The Procter & Gamble Company|Disposable absorbent article having surface modified topsheet|
EP3644931A1|2017-06-30|2020-05-06|The Procter and Gamble Company|Disposable absorbent article having surface modified topsheet|
WO2019075688A1|2017-10-19|2019-04-25|The Procter & Gamble Company|Topsheet comprising natural fibers|
KR101940215B1|2018-04-05|2019-01-18|왕보|Hygienic goods using hydrophobic surface sheet and the manufacturing apparatus thereof|
WO2020028735A1|2018-08-03|2020-02-06|The Procter & Gamble Company|Webs with compositions thereon|
US11236448B2|2018-11-30|2022-02-01|The Procter & Gamble Company|Methods for producing through-fluid bonded nonwoven webs|
WO2021142775A1|2020-01-17|2021-07-22|The Procter & Gamble Company|Absorbent articles comprising semi-hydrophilic compositions|
法律状态:
2016-10-06| FGA| Letters patent sealed or granted (standard patent)|
优先权:
申请号 | 申请日 | 专利标题
US13/362,915||2012-01-31||
US13/362,915|US9237973B2|2012-01-31|2012-01-31|Treated apertures|
PCT/IB2013/050285|WO2013114231A1|2012-01-31|2013-01-11|Treated apertures|
[返回顶部]